Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Comput Biol Med ; 153: 106449, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165192

ABSTRACT

The main (Mpro) and papain-like (PLpro) proteases are highly conserved viral proteins essential for replication of the COVID-19 virus, SARS-COV-2. Therefore, a logical plan for producing new drugs against this pathogen is to discover inhibitors of these enzymes. Accordingly, the goal of the present work was to devise a computational approach to design, characterize, and select compounds predicted to be potent dual inhibitors - effective against both Mpro and PLpro. The first step employed LigDream, an artificial neural network, to create a virtual ligand library. Ligands with computed ADMET profiles indicating drug-like properties and low mammalian toxicity were selected for further study. Initial docking of these ligands into the active sites of Mpro and PLpro was done with GOLD, and the highest-scoring ligands were redocked with AutoDock Vina to determine binding free energies (ΔG). Compounds 89-00, 89-07, 89-32, and 89-38 exhibited favorable ΔG values for Mpro (-7.6 to -8.7 kcal/mol) and PLpro (-9.1 to -9.7 kcal/mol). Global docking of selected compounds with the Mpro dimer identified prospective allosteric inhibitors 89-00, 89-27, and 89-40 (ΔG -8.2 to -8.9 kcal/mol). Molecular dynamics simulations performed on Mpro and PLpro active site complexes with the four top-scoring ligands from Vina demonstrated that the most stable complexes were formed with compounds 89-32 and 89-38. Overall, the present computational strategy generated new compounds with predicted drug-like characteristics, low mammalian toxicity, and high inhibitory potencies against both target proteases to form stable complexes. Further preclinical studies will be required to validate the in silico findings before the lead compounds could be considered for clinical trials.


Subject(s)
COVID-19 , Peptide Hydrolases , Animals , SARS-CoV-2 , Molecular Dynamics Simulation , Ligands , Prospective Studies , Neural Networks, Computer , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Mammals
2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1969293

ABSTRACT

Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.


Subject(s)
COVID-19 , Neoplasms , Animals , Humans , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-2/genetics , SARS-CoV-2
3.
Struct Chem ; 33(5): 1771-1788, 2022.
Article in English | MEDLINE | ID: covidwho-1966169

ABSTRACT

The novel coronavirus 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly worldwide, and new drug treatments for COVID-19 are urgently required. To find the potential inhibitors against the main protease (Mpro) of SARS-CoV-2, we investigated the inhibitory potential of naturally occurring compounds from the plants Moringa oleifera, Aloe vera, and Nyctanthes arbor-tristis, using molecular docking, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations. Of the 35 compounds that we simulated, feralolide from Aloe vera exhibited the highest binding affinity against Mpro. Therefore, we proposed novel compounds based on the feralolide and investigated their binding properties to Mpro. The FMO results indicated that the introduction of a hydroxyl group into feralolide significantly enhances its binding affinity to Mpro. These results provide useful information for developing potent Mpro inhibitors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02021-y.

4.
Med Hypotheses ; 161: 110810, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1763895

ABSTRACT

The far-reaching effects of the SARS-CoV-2 pandemic have crippled the progress of the world today. With the introduction of newer and newer mutated variants of the virus, it has become necessary to have a vaccine that remains useful against all the mutated strains of SARS-CoV-2. In this regard, peptide vaccines turn out to be a cheap alternative to the traditionally designed vaccines owing to their much quicker and computationally easier, and more robust design procedures. Here, in this article, we hypothesize that there are three possible peptide vaccine regions that can be targeted to prevent the surge of SARS-CoV-2. The candidates that were selected, were surface-exposed and were not sequestered by any neighbouring amino acids. They were also found to be capable of generating both B-cell and T-cell immune responses. Most importantly, none of them contains any spike protein mutation of the currently prevailing variants of SARS-CoV-2. From these findings, we have therefore concluded that these three regions can be used in wet labs for peptide vaccine design against the upcoming strains of SARS-CoV-2.

5.
Int J Mol Sci ; 23(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580695

ABSTRACT

Since December 2019, the new SARS-CoV-2-related COVID-19 disease has caused a global pandemic and shut down the public life worldwide. Several proteins have emerged as potential therapeutic targets for drug development, and we sought out to review the commercially available and marketed SARS-CoV-2-targeted libraries ready for high-throughput virtual screening (HTVS). We evaluated the SARS-CoV-2-targeted, protease-inhibitor-focused and protein-protein-interaction-inhibitor-focused libraries to gain a better understanding of how these libraries were designed. The most common were ligand- and structure-based approaches, along with various filtering steps, using molecular descriptors. Often, these methods were combined to obtain the final library. We recognized the abundance of targeted libraries offered and complimented by the inclusion of analytical data; however, serious concerns had to be raised. Namely, vendors lack the information on the library design and the references to the primary literature. Few references to active compounds were also provided when using the ligand-based design and usually only protein classes or a general panel of targets were listed, along with a general reference to the methods, such as molecular docking for the structure-based design. No receptor data, docking protocols or even references to the applied molecular docking software (or other HTVS software), and no pharmacophore or filter design details were given. No detailed functional group or chemical space analyses were reported, and no specific orientation of the libraries toward the design of covalent or noncovalent inhibitors could be observed. All libraries contained pan-assay interference compounds (PAINS), rapid elimination of swill compounds (REOS) and aggregators, as well as focused on the drug-like model, with the majority of compounds possessing their molecular mass around 500 g/mol. These facts do not bode well for the use of the reviewed libraries in drug design and lend themselves to commercial drug companies to focus on and improve.


Subject(s)
Antiviral Agents/chemistry , Drug Design/methods , High-Throughput Screening Assays/methods , Protease Inhibitors/chemistry , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Small Molecule Libraries/chemistry , Databases, Chemical , Humans , Molecular Docking Simulation , Protease Inhibitors/metabolism , SARS-CoV-2/metabolism
6.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1470891

ABSTRACT

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Amides/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Catalytic Domain , Databases, Chemical , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Guanidine/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Sulfides/chemistry , Thermodynamics , Viral Proteins/metabolism , COVID-19 Drug Treatment
7.
Int J Pept Res Ther ; 27(4): 2257-2273, 2021.
Article in English | MEDLINE | ID: covidwho-1316307

ABSTRACT

The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. In this work, a precise computational approach has been established wherein two new mathematical parameters have been suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, w, is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation. This method has been, therefore, used to determine possible vaccine targets against SARS-CoV-2 by considering its surface-situated spike glycoprotein. The results of this model have been verified by a parallel analysis using the older approach of manually estimating the graphs describing the variation of conservativeness and surface-exposure across the protein sequence. Furthermore, the working of the method has been tested by applying it to find out peptide vaccine candidates for Zika and Hendra viruses respectively. A satisfactory consistency of the model results with pre-established results for both the test cases shows that this in silico alignment-free analysis proposed by the model is suitable not only to determine vaccine targets against SARS-CoV-2 but also ready to extend against other viruses.

8.
Molecules ; 26(10)2021 May 18.
Article in English | MEDLINE | ID: covidwho-1234780

ABSTRACT

COVID-19 represents a new potentially life-threatening illness caused by severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 pathogen. In 2021, new variants of the virus with multiple key mutations have emerged, such as B.1.1.7, B.1.351, P.1 and B.1.617, and are threatening to render available vaccines or potential drugs ineffective. In this regard, we highlight 3CLpro, the main viral protease, as a valuable therapeutic target that possesses no mutations in the described pandemically relevant variants. 3CLpro could therefore provide trans-variant effectiveness that is supported by structural studies and possesses readily available biological evaluation experiments. With this in mind, we performed a high throughput virtual screening experiment using CmDock and the "In-Stock" chemical library to prepare prioritisation lists of compounds for further studies. We coupled the virtual screening experiment to a machine learning-supported classification and activity regression study to bring maximal enrichment and available structural data on known 3CLpro inhibitors to the prepared focused libraries. All virtual screening hits are classified according to 3CLpro inhibitor, viral cysteine protease or remaining chemical space based on the calculated set of 208 chemical descriptors. Last but not least, we analysed if the current set of 3CLpro inhibitors could be used in activity prediction and observed that the field of 3CLpro inhibitors is drastically under-represented compared to the chemical space of viral cysteine protease inhibitors. We postulate that this methodology of 3CLpro inhibitor library preparation and compound prioritisation far surpass the selection of compounds from available commercial "corona focused libraries".


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Small Molecule Libraries , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans
9.
Biophys Chem ; 275: 106608, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1219972

ABSTRACT

This paper proposes natural drug candidate compounds for the treatment of coronavirus disease 2019 (COVID-19). We investigated the binding properties between the compounds in the Moringa oleifera plant and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 using molecular docking and ab initio fragment molecular orbital calculations. Among the 12 compounds, niaziminin was found to bind the strongest to Mpro. We furthermore proposed novel compounds based on niaziminin and investigated their binding properties to Mpro. The results reveal that the introduction of a hydroxyl group into niaziminin enhances its binding affinity to Mpro. These niaziminin derivatives can be promising candidate drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Moringa oleifera/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Thiocarbamates/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Design , Drug Discovery , Gene Expression , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantum Theory , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , Thermodynamics , Thiocarbamates/classification , Thiocarbamates/isolation & purification , Thiocarbamates/pharmacology , COVID-19 Drug Treatment
10.
Beni Suef Univ J Basic Appl Sci ; 10(1): 9, 2021.
Article in English | MEDLINE | ID: covidwho-1059677

ABSTRACT

BACKGROUND: The present pandemic situation due to coronavirus has led to the search for newer prevention, diagnostic, and treatment methods. The onset of the corona infection in a human results in acute respiratory illness followed by death if not diagnosed and treated with suitable antiretroviral drugs. With the unavailability of the targeted drug treatment, several repurposed drugs are being used for treatment. However, the side-effects of the drugs urges us to move to a search for newer synthetic- or phytochemical-based drugs. The present study investigates the use of various phytochemicals virtually screened from various plant sources in Western Ghats, India, and subsequently molecular docking studies were performed to identify the efficacy of the drug in retroviral infection particularly coronavirus infection. RESULTS: Out of 57 phytochemicals screened initially based on the structural and physicochemical properties, 39 were effectively used for the docking analysis. Finally, 5 lead compounds with highest hydrophobic interaction and number of H-bonds were screened. Results from the interaction analysis suggest Piperolactam A to be pocketed well with good hydrophobic interaction with the residues in the binding region R1. ADME and toxicity profiling also reveals Piperolactam A with higher LogS values indicating higher permeation and hydrophilicity. Toxicity profiling suggests that the 5 screened compounds to be relatively safe. CONCLUSION: The in silico methods used in this study suggests that the compound Piperolactam A to be the most effective inhibitor of S-protein from binding to the GRP78 receptor. By blocking the binding of the S-protein to the CS-GRP78 cell surface receptor, they can inhibit the binding of the virus to the host. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43088-021-00095-x.

11.
Molecules ; 25(24)2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-967331

ABSTRACT

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel approach using ensemble docking high-throughput virtual screening directly coupled with subsequent Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to assess the binding affinity of identified inhibitors. A large database of small commercial compounds was prepared, and top-scoring hits were identified with two compounds singled out, namely 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde. Moreover, we obtained a favorable binding free energy of the identified compounds, and using contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds will facilitate further 3CLpro inhibitor design.


Subject(s)
Coronavirus 3C Proteases , Cysteine Proteinase Inhibitors/chemistry , Molecular Docking Simulation , SARS-CoV-2/enzymology , Binding Sites , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry
12.
Molecules ; 25(14)2020 Jul 13.
Article in English | MEDLINE | ID: covidwho-646769

ABSTRACT

We use state-of-the-art computer-aided drug design (CADD) techniques to identify prospective inhibitors of the main protease enzyme, 3CLpro of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19. From our screening of over one million compounds including approved drugs, investigational drugs, natural products, and organic compounds, and a rescreening protocol incorporating enzyme dynamics via ensemble docking, we have been able to identify a range of prospective 3CLpro inhibitors. Importantly, some of the identified compounds had previously been reported to exhibit inhibitory activities against the 3CLpro enzyme of the closely related SARS-CoV virus. The top-ranking compounds are characterized by the presence of multiple bi- and monocyclic rings, many of them being heterocycles and aromatic, which are flexibly linked allowing the ligands to adapt to the geometry of the 3CLpro substrate site and involve a high amount of functional groups enabling hydrogen bond formation with surrounding amino acid residues, including the catalytic dyad residues H41 and C145. Among the top binding compounds we identified several tyrosine kinase inhibitors, which include a bioflavonoid, the group of natural products that binds best to 3CLpro. Another class of compounds that decently binds to the SARS-CoV-2 main protease are steroid hormones, which thus may be endogenous inhibitors and might provide an explanation for the age-dependent severity of COVID-19. Many of the compounds identified by our work show a considerably stronger binding than found for reference compounds with in vitro demonstrated 3CLpro inhibition and anticoronavirus activity. The compounds determined in this work thus represent a good starting point for the design of inhibitors of SARS-CoV-2 replication.


Subject(s)
Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Drug Discovery , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , COVID-19 , Computer Simulation , Coronavirus 3C Proteases , Cysteine Endopeptidases , Drug Design , Humans , Inhibitory Concentration 50 , Ligands , Models, Molecular , Molecular Structure , Pandemics , SARS-CoV-2 , Software , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL